skip to main content


Search for: All records

Creators/Authors contains: "Papadopoulos, Lia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly described brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.

     
    more » « less
  2. Abstract

    Mesoscopic quantum systems exhibit complex many-body quantum phenomena, where interactions between spins and charges give rise to collective modes and topological states. Even simple, non-interacting theories display a rich landscape of energy states—distinct many-particle configurations connected by spin- and energy-dependent transition rates. The ways in which these energy states interact is difficult to characterize or predict, especially in regimes of frustration where many-body effects create a multiply degenerate landscape. Here, we use network science to characterize the complex interconnection patterns of these energy-state transitions. Using an experimentally verified computational model of electronic transport through quantum antidots, we construct networks where nodes represent accessible energy states and edges represent allowed transitions. We find that these networks exhibit Rentian scaling, which is characteristic of efficient transportation systems in computer circuitry, neural circuitry, and human mobility, and can be used to measure the interconnection complexity of a network. We find that the topological complexity of the state transition networks—as measured by Rent’s exponent— correlates with the amount of current flowing through the antidot system. Furthermore, networks corresponding to points of frustration (due, for example, to spin-blockade effects) exhibit an enhanced topological complexity relative to non-frustrated networks. Our results demonstrate that network characterizations of the abstract topological structure of energy landscapes capture salient properties of quantum transport. More broadly, our approach motivates future efforts to use network science to understand the dynamics and control of complex quantum systems.

     
    more » « less